8 research outputs found

    Water Surface Impact and Ricochet of Deformable Elastomeric Spheres

    Get PDF
    Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this “football” dipping into the water as it rotates and the sides passing just over the surface. This sequence of rapid impact events give the impression that the sphere is walking across the water surface

    Fluted Films

    Get PDF
    This paper is associated with a poster winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.P003

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Entry of a Sphere into a Water-Surfactant Mixture and the Effect of a Bubble Layer

    Get PDF
    A rigid sphere entering a liquid bath does not always produce an entrained air cavity. Previous experimental work shows that cavity formation, or the lack thereof, is governed by fluid properties, wetting properties of the sphere, and impact velocity. In this study, wetting steel spheres are dropped into a water-surfactant mixture with and without passing through a bubble layer first. Surprisingly, in the case of a water-surfactant mixture without a bubble layer, the critical velocity for cavity formation becomes radius dependent. This occurs due to dynamic surface tension effects, with the local surface tension in the splash increasing during surface expansion and decreasing as surfactant molecules adsorb to the newly formed interface. The larger sphere radii take longer to submerge and hence allow more time for the surface tension to decrease back to the equilibrium value and decrease the critical velocity for cavity formation. When a soap bubble layer is present, subsurface cavities form at all impact velocities. Our analysis shows that the bubble layer wets the sphere prior to impact with a patchy coating of droplets and bubbles. The droplets alter the splash and create an aperture for air entrainment, which leads to cavity formation at wetted locations on the sphere surface. The water-surfactant entry behavior of these partially wetted spheres results in a progression of cavity formation regimes with increasing Weber number, similar to the cavity regimes of hydrophobic spheres entering water. Nonuniform droplet coatings create cavity asymmetries altering transitions between these regimes

    Water Walking as a New Mode of Free Surface Skipping

    Get PDF
    Deformable elastomeric spheres are evaluated experimentally as they skip multiple times over a lake surface. Some spheres are embedded with small inertial measurement units to measure the acceleration experienced during water surface impact. A model for multiple impact events shows good agreement between measured acceleration, number of skipping events and distanced traveled. The experiment reveals a new mode of skipping, “water walking”, which is observed for relatively soft spheres impacting at low impact angles. The mode occurs when the sphere gains significant angular velocity over the first several impacts, causing the sphere to maintain a deformed, oblong shape. The behavior is characterized by the sphere moving nearly parallel to the water surface with the major axis tips dipping below the water surface with each rotation while the shorter sides pass just above, giving the impression that the sphere is walking across the water surface

    Matryoshka cavity

    Get PDF
    When a water droplet impacts a free surface with sufficient velocity, the momentum transfer results in the formation of a hemispherical cavity expanding radially from the point of impact.1 This cavity continues to expand until the kinetic energy is completely converted to potential energy (Fig. 1(a)).2 Pumphrey and Elmore equated the potential energy of this subsurface cavity with the kinetic energy of the impacting droplet, concluding that the magnitude of the cavity radius is proportional to impact velocity and droplet diameter.

    Shear Joy of Watching Paint Dry

    Get PDF
    This paper is associated with a video winner of a 2016 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore